In Silico-Mediated Virtual Screening and Molecular Docking Platforms for Discovery of Non β-Lactam Inhibitors of Y-49 β-Lactamase from Mycobacterium Tuberculosis

نویسنده

  • S. Kernodle
چکیده

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a worldwide health concern. The world health organization in its 2017 tuberculosis report states, “TB is the ninth leading cause of death worldwide and the leading cause from a single infectious agent, ranking above HIV/AIDS” [1-3]. The failure to control TB is due to the emergence of Mtb strains that are resistant to first line beta lactam antibiotics, because of overuse. One of the most effective resistance mechanisms to β-lactam antibiotics involves the production of β-lactamases which cleave the amide bond in the target β-lactam ring hydrolyzing the drug before it reaches its target. The beta-lactamases are classified into four classes: A, B, C and D. These classes are based on conserved and distinguishing amino acid motifs [1-3]. Classes A, C, and D include enzymes that hydrolyze their substrates by forming an acyl enzyme through an active site serine. Class B β-lactamases are metalloenzymes that utilize at least one active-site zinc ion to facilitate β-lactam hydrolysis. One of the most efficient and prevalent mechanisms of resistance to β-lactam antibiotics is the production of β-lactamases in both Gram-negative and Gram-positive bacteria that hydrolyze the drugs before they can reach their target and exert the desired effect. These resistance mechanisms are important, and each bacterium can create a combination of defenses depending on the selective pressures placed on it [1-4]. The intrinsic resistance to β-lactam antibiotics was demonstrated to be mainly due to the presence of a chromosomally-encoded gene (blaC) in M. tuberculosis for a Class A, Ambler β-lactamase (BlaC). The BlaC enzyme has already been validated as one of the leading targets of tuberculosis therapy. This enzyme is extremely active against Volume 7 Issue 1 2018

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined Support-Vector-Machine-Based Virtual Screening and Docking Method for the Discovery of IMP-1 Metallo-β-Lactamase Inhibitors

Metallo-β-lactamases can hydrolyze a broad range of β-lactam antibiotics and no effective inhibitors could be used in the clinic. Therefore, the discovery of metallo-β-lactamase inhibitors has attracted much attention in recent years. In this study, a support vector machine (SVM) that separates compounds into positives and negatives, combined with docking method was employed for virtual screeni...

متن کامل

Validation of the AmpC β-Lactamase Binding Site and Identification of Inhibitors with Novel Scaffolds

AmpC β-lactamase confers resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds that inhibit the enzyme is considered crucial to the development of novel antibacterial therapies. Given the highly solvent-exposed active site, it is important to study the induced-fit movements and water-mediated interactions to improve docking ac...

متن کامل

In-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery

Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...

متن کامل

Virtual Screening of Small Molecular Inhibitors against DprE1.

Decaprenylphosphoryl-β-d-ribose oxidase (DprE1) is the flavoprotein subunit of decaprenylphosphoryl-d-ribose epimerase involved in cell wall synthesis in Mycobacterium tuberculosis and catalyzes the conversion of decaprenylphosphoryl ribose to decaprenylphosphoryl arabinose. DprE1 is a potential target against tuberculosis, including multidrug-resistant tuberculosis. We identified potential Dpr...

متن کامل

In-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery

Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018